中文信息处理研究现状分析

宗成庆

语言战略研究 ›› 2016, Vol. 1 ›› Issue (6) : 19-26.

欢迎访问《语言战略研究》官方网站!今天是
语言战略研究 ›› 2016, Vol. 1 ›› Issue (6) : 19-26.
语言战略研究

中文信息处理研究现状分析

  • 宗成庆
作者信息 +

Chinese Language Processing: Achievements and ProblemsZong ChengqingAbstract

Author information +
文章历史 +

摘要

60多年来中文信息处理研究取得了令人瞩目的成就。但是,这一领域也面临问题和挑战。本文在对中文信息处理研究成就简要归纳的基础上,分析这一领域的技术现状,直面存在的问题,并对未来发展的方向提出一些看法。希望本文指出的问题能够引起中国国内同行的关注,为未来的中文信息处理研究提供有益的参考。

Abstract

In the past over 60 years, research on Chinese language processing has made great achievements. With the rapid development and popularization of the Internet and communication technology, Chinese language processing technology has attracted worldwide attention in recent years. This article summarizes the achievements of Chinese language processing and analyzes the present status of the technology in this field, particularly the problems that the field may face in term of development. The author argues that it is stilldifficult for artificial intelligence to “understand” rather than “process” naturally produced Chinese because of the following three reasons:(1) the current information processing technology is inadequate in processing grammatically complex Chinese sentences; (2) there are unsolved problems in machine learning technologies; and (3) our understanding of how human brain processes language is still very limited. This paper concludes that we need a better understanding of how the Chinese language is decoded in human brain and build acomputational model that specifically targets at the Chinese language in order for artificial intelligence to understand naturally produced Chinese.

关键词

中文信息处理 / 自然语言处理 / 自然语言理解 / 计算语言学

Key words

Chinese language processing / natural language processing / natural language understanding / computational linguistics

引用本文

导出引用
宗成庆. 中文信息处理研究现状分析[J]. 语言战略研究. 2016, 1(6): 19-26
Chinese Language Processing: Achievements and ProblemsZong ChengqingAbstract[J]. Chinese Journal of Language Policy and Planning. 2016, 1(6): 19-26

参考文献

李 幸、宗成庆 2006 《引入标点处理的层次化汉语长句句法分析方法》,《中文信息学报》第4 期。
李宇明 2007 《关于〈中国语言生活绿皮书〉》,《语言文字应用》第1 期。
宋 柔 2012 《汉语篇章广义话题结构研究》,北京语言大学语言信息处理研究所研究报告。
王德亮 2004 《汉语零形回指解析——基于向心理论的研究》,《现代外语》第4 期。宗成庆 2013 《统计自然语言处理》,北京:清华大学出版社。
宗成庆、曹右琦、俞士汶 2009 《中文信息处理60年》,《语言文字应用》第4 期。
宗成庆、高庆狮 2008 《中国语言技术进展》,《中国计算机学会通讯》第8 期。
Ballesteros, Miguel, Chris Dyer, and Noah A. Smith. 2015. Improved Transition-Based Parsing by Modeling Characters instead of Words with LSTMs. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Dyer, Chris, Miguel Ballesteros, Wang Ling, Austin Matthews,and Noah A. Smith. 2015. Transition-Based Dependency Parsing with Stack Long Short-Term Memory. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conferenceon Natural Language Processing (ACL-IJCNLP).
Kang, Xiaomian, Haoran Li, Long Zhou, Jiajun Zhang, andChengqing Zong. 2016. An End-to-End Chinese DiscourseParser with Adaptation to Explicit and Non-Explicit RelationRecognition. Proceedings of the SIGNLL Conference on Computational Natural Language Learning (CoNLL).
Li, Ping, Zhen Jin, and Li Hai Tan. 2014. Neural Representations of Nouns and Verbs in Chinese: An fMRI Study. Neuroimage 21, 1533-1541.

Accesses

Citation

Detail

段落导航
相关文章

/