众包策略在语言资源建设中的应用

黄居仁 王世昌

语言战略研究 ›› 2016, Vol. 1 ›› Issue (6) : 36-46.

欢迎访问《语言战略研究》官方网站!今天是
语言战略研究 ›› 2016, Vol. 1 ›› Issue (6) : 36-46.
语言战略研究

众包策略在语言资源建设中的应用

  • 黄居仁 王世昌
作者信息 +

The Application of Crowdsourcing Strategy in Utilizing Language Resources

  • Chu-Ren Huang and Wang Shichang
Author information +
文章历史 +

摘要

众包概念可从众包策略、众包策略的实现方法以及众包策略的实现案例三个层面来理解。众包策略的要义在于借助互联网以公开招募的形式汇聚众智众力解决问题。语言资源建设包括本体语言资源建设和派生语言资源建设两项主要内容。众包在语言资源建设中可用于语言数据的采集和加工、语言生活舆情调查、为语言资源建设提供资金和设施支持、促进语言资源建设的宣传推广和语言资源建设社会力量的培育。众包为多、快、好、省、可持续地进行语言资源建设提供了可能。土耳其机器人在语言资源建设中有着广泛的应用空间,是目前众包策略运用于语言资源建设的最具操作性和最为成熟的实现方法。

Abstract

The crowdsourcing concept can be understood from three perspectives: the crowdsourcing strategy, the implementation method of crowdsourcing strategy, and the implementation
case of crowdsourcing strategy. The gist of crowdsourcing strategy is to unite the power and wisdom of crowds to solve problems in the form of open call via the Internet. Language
resource construction consists of natural language resource construction and extended language resource construction. In language resource construction, crowdsourcing can be used to collect language data, to process language data, to conduct language-related surveys, to fund language resource construction, to promote the publicity of language resource construction, and to cultivate the social forces for language resource construction. This paper provides a relatively detailed explanation of the development of crowdsourcing strategy and how it can be utilized in developing language resources with an illustration of Mechanical Turk, which has extensive applications in language resource construction and is the most well established and operational crowdsourcing implementation method at present. At the end of the article, we further elaborate the strength of this innovative approach that presents a strategic opportunity for users to champion a collaborative digital enterprise and to tap into the possibility contributed by diverse audience through using a variety of social media and collaborative software solutions, showing our optimism for the prospect of outsourcing work to the crowd for obtaining needed services or ideas in resolving problems.

关键词

众包 / 众包策略 / 众包平台 / 语言资源 / 土耳其机器人

Key words

crowdsourcing / crowdsourcing strategy / crowdsourcing platform / language resource / Mechanical Turk

引用本文

导出引用
黄居仁 王世昌. 众包策略在语言资源建设中的应用[J]. 语言战略研究. 2016, 1(6): 36-46
Chu-Ren Huang and Wang Shichang. The Application of Crowdsourcing Strategy in Utilizing Language Resources[J]. Chinese Journal of Language Policy and Planning. 2016, 1(6): 36-46

参考文献

曹志耘 2015 《中国语言资源保护工程的定位、目标与任务》,《语言文字应用》第4 期。
陈 敏 2010 《国家语言资源监测与研究中心概介》,《术语标准化与信息技术》第3 期。
陈章太 2008 《论语言资源》,《语言文字应用》第1期。
崔 乐 2011 《语言资源监测研究发展态势》,《江汉大学学报》(人文科学版)第3 期。
范俊军、肖自辉 2010 《国家语言普查刍议》,《语言文字应用》第1 期。
胡明扬 1999 《说“ 词语”》,《语言文字应用》第3期。
李宇明 2008 《语言资源观及中国语言普查》,《郑州大学学报》(哲学社会科学版)第1 期。
李宇明 2011 《语言也是“ 硬实力”》,《华中师范大学学报》( 人文社会科学版)第 5 期。
李宇明 2012 《当代中国语言生活中的问题》,《中国社会科学》第9 期。
王洪君 2006 《从本族人语感看汉语的“ 词”——评王立〈汉语词的社会语言学研究〉》,《语言科学》第5期。
王 立 2003 《汉语词的社会语言学研究》,北京:商务印书馆。
王铁琨 2010 《基于语言资源理念的语言规划——以“语言资源监测研究”和“中国语言资源有声数据库建设” 为例》,《陕西师范大学学报》(哲学社会科学版)第6 期。
王铁琨、崔 乐、高媛媛 2011 《谈谈基于数据分析的语言资源监测研究工作》,《北华大学学报》(社会科学版)第4 期。
Behrend, Tara S., David J. Sharek, Adam W. Meade, and Eric N. Wiebe. 2011. The Viability of Crowdsourcing for Survey Research. Behavior Research Methods 43(3), 800-813.
Callison-Burch, Chris and Mark Dredze. 2010. Creating Speech and Language Data with Amazon’s Mechanical Turk. Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon’s Mechanical Turk, 1-12.
Chen, Tao and Min-Yen Kan. 2013. Creating a Live, Public Short Message Service Corpus: The NUS SMS Corpus. Language Resources and Evaluation 47(2), 299-335.
Crump, Matthew J. C., John V. McDonnell, and Todd M. Gureckis. 2013. Evaluating Amazon’s Mechanical Turk as a Tool for Experimental Behavioral Research. PLoS ONE 8(3), e57410.
Enochson, Kelly and Jennifer Culbertson. 2015. Collecting Psycholinguistic Response Time Data Using Amazon Mechanical Turk. PLoS ONE 10(3), e0116946.
Geiger, David, Stefan Seedorf, Thimo Schulze, Robert C. Nickerson, and Martin Schader. 2011. Managing the Crowd: Towards a Taxonomy of Crowdsourcing Processes.
Proceedings of the Seventheenth America’s Conference on Information Systems, 1-11.
Hoosain, Rumjahn. 1992. Psychological Reality of the Word in Chinese. Advances in Psychology 90, 111-130.
Howe, Jeff. 2006. The Rise of Crowdsourcing. Wired Magazine 14(6), 1-4.
Howe, Jeff. 2009. Crowdsourcing: Why the Power of the Crowd Is Driving the Future of Business. New York: Three Rivers Press.
Kuperman, Victor, Hans Stadthagen-Gonzalez, and Marc Brysbaert. 2012. Age-of-Acquisition Ratings for 30 000 English Words. Behavior Research Methods 44(4), 978-990.
Mason, Winter and Siddharth Suri. 2012. Conducting Behavioral Research on Amazon’s Mechanical Turk. Behavior Research Methods 44(1), 1-23.
Quinn, Alexander J. and Benjamin B. Bederson. 2009. A Taxonomy of Distributed Human Computation. University of Maryland 107(2), 263-270.
Quinn, Alexander J. and Benjamin B. Bederson. 2011. Human Computation: A Survey and Taxonomy of a Growing Field. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1403-1412.
Raymond, Eric S. 1998. The Cathedral and the Bazaar. First Monday 3(3). 2 Mar. 1998. 2 Jul. 2016. http://fi rstmonday. org/article/view/578/499.
Tapscott, Don and Anthony D. Williams. 2006. Wikinomics: How Mass Collaboration Changes Everything. Region 42(1), 11.
von Ahn, Luis. 2006. Games with a Purpose. IEEE Computer 39(6), 92-94.
von Ahn, Luis, Benjamin Maurer, Colin McMillen, David Abraham, and Manuel Blum. 2008. reCAPTCHA: Human-Based Character Recognition via Web Security Measures. Science 321(5895), 1465-1468.
Wang, Shichang. 2016. Crowdsourcing Method in Empirical Linguistic Research: Chinese Studies Using Mechanical Turk-Based Experimentation. PhD thesis, The Hong Kong Polytechnic University.
Wang, Shichang, Chu-Ren Huang, Yao Yao, and Angel Chan. 2014a. Building a Semantic Transparency Dataset of Chinese Nominal Compounds: A Practice of Crowdsourcing Methodology. Proceedings of Workshop on Lexical and Grammatical Resources for Language Processing, 147-156.
Wang, Shichang, Chu-Ren Huang, Yao Yao, and Angel Chan. 2014b. Exploring Mental Lexicon in an Efficient and Economic Way: Crowdsourcing Method for Linguistic Experiments. Proceedings of the 4th Workshop on Cognitive Aspects of the Lexicon, 105-113.
Wang, Shichang, Chu-Ren Huang, Yao Yao, and Angel Chan. 2015a. Create a Manual Chinese Word Segmentation Dataset Using Crowdsourcing Method. Proceedings of the Eighth SIGHAN Workshop on Chinese Language Processing, 7-14.
Wang, Shichang, Chu-Ren Huang, Yao Yao, and Angel Chan. 2015b. Mechanical Turk-Based Experiment vs Laboratory-Based Experiment: A Case Study on the Comparison of Semantic Transparency Rating Data. Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation, 53-62.

基金

本研究得到了中华人民共和国香港特别行政区研究资助局优配研究金(GRF)立项项目(PolyU544011)的支持。感谢匿名审稿专家和编辑部的宝贵意见。

Accesses

Citation

Detail

段落导航
相关文章

/