词汇语义变化与社会变迁定量观测与分析

刘知远 刘 扬 涂存超 孙茂松

语言战略研究 ›› 2016, Vol. 1 ›› Issue (6) : 47-54.

欢迎访问《语言战略研究》官方网站!今天是
语言战略研究 ›› 2016, Vol. 1 ›› Issue (6) : 47-54.
语言战略研究

词汇语义变化与社会变迁定量观测与分析

  • 刘知远 刘 扬 涂存超 孙茂松
作者信息 +

Lexical Semantic Variation and Social Change: Quantitative Observation and Analysis

  • Liu Zhiyuan, Liu Yang, Tu Cunchao and Sun Maosong
Author information +
文章历史 +

摘要

随着社会的发展和科技的进步,人们交流的内容与方式发生着翻天覆地的变化,交流所使用的词汇和语义也发生了显著变化。在过去的研究中,研究者主要通过词汇的使用频度变化来观测和分析词汇语义的变迁,取得了很多重要发现。但是这些词频统计方法无法考虑词汇的语义内涵。为了更精确地捕获词汇语义变化及其反映的社会变迁,我们利用分布式词表示方法,提出将词汇的多个词义用不同的低维向量表示。利用该方法,研究者可以根据词义使用频度的变化情况,定量观测与分析词义变化与社会变迁。这将为语言演化、社会语言学乃至语言规划研究提供重要量化工具。

Abstract

With social and technological developments, the contents and means of human communication have undergone tremendous changes, which, in turn, lead to the evolution of word forms and their meanings in human language. In literature, much scholarship has been devoted to the semantic dynamics of words from the perspective of usage frequency, yet this frequency-based method cannot explain clearly the lexical-semantic change due to its failure to cover word senses. In this paper, a large-scale Chinese newspaper text corpus is employed and the distributed representations of some words and their senses are elicited in order to observe the diachronic evolvement of word semantics. The semantic change of the words in the timeline suggests that the distributional method proposed in this paper is effective for the exploration of lexical semantic dynamics. The implication of this study is that the corpus-based distributional method can become a useful tool for studies in other fi elds, such as language evolution, sociolinguistics and language planning.

关键词

词汇语义 / 社会变迁 / 时序信息 / 分布式表示 / 词向量

Key words

lexical semantics / social change / temporal information / distributed representation / word representation

引用本文

导出引用
刘知远 刘 扬 涂存超 孙茂松. 词汇语义变化与社会变迁定量观测与分析[J]. 语言战略研究. 2016, 1(6): 47-54
Liu Zhiyuan, Liu Yang, Tu Cunchao and Sun Maosong. Lexical Semantic Variation and Social Change: Quantitative Observation and Analysis[J]. Chinese Journal of Language Policy and Planning. 2016, 1(6): 47-54

参考文献

陈章太 2005 《当代中国的语言规划》,《语言文字应用》第1 期。
金观涛、刘青峰 2009 《观念史研究:中国现代重要政治术语的形成》,北京:法律出版社。
刘海涛 2007 《语言规划的生态观——兼评〈语言规划:从实践到理论〉》,《北华大学学报》(社会科学版)第6 期。
Aiden, Erez Lieberman and Jean-Baptiste Michel. 2013. Uncharted: Big Data as a Lens on Human Culture. New York: Riverhead Books.
Bamman, David and Gregory Crane. 2011. Measuring Historical Word Sense Variation. Proceedings of JCDL, 1-10.
Bengio, Yoshua, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A Neural Probabilistic Language Model. The Journal of Machine Learning Research 3, 1137-1155.
Chen, Xinxiong, Zhiyuan Liu, and Maosong Sun. 2014. A Unified Model for Word Sense Representation and Disambiguation. Proceedings of EMNLP.
Eisenstein, Jacob, Brendan O'Connor, Noah A. Smith, and Eric P. Xing. 2010. A Latent Variable Model for Geographic Lexical Variation. Proceedings of EMNLP.
Leskovec, Jure, Lars Backstrom, and Jon Kleinberg. 2009. Meme-Tracking and the Dynamics of the News Cycle. Proceedings of KDD.
Lieberman, Erez, Jean-Baptiste Michel1, Joe Jackson, Tina Tang, and Martin A. Nowak. 2007. Quantifying the Evolutionary Dynamics of Language. Nature 449(7163), 713-716.
Mihalcea, Rada, and Vivi Nastase. 2012. Word Epoch Disambiguation: Finding How Words Change Over Time. Proceedings of ACL, 259-263.
Michel, Jean-Baptiste, Yuan Kui Shen, Aviva Presser Aiden, Adrian Veres, Matthew K. Gray, Joseph P. Pickett, Dale Hoiberg, Dan Clancy, Peter Norvig, Jon Orwant, Steven Pinker, Martin A. Nowak, and Erez Lieberman Aiden. 2011. Quantitative Analysis of Culture Using Millions of Digitized Books. Science 331(6014), 176-182.
Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S. Corrado,and Jeff Dean. 2013. Distributed Representations of Words and Phrases and Their Compositionality. Proceedings of NIPS, 3111-3119.
Navigli, Roberto. 2009. Word Sense Disambiguation: A Survey.ACM Computing Surveys (CSUR) 41.2, 10.
Tian, Fei, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang, EnhongChen, and Tie-Yan Liu. 2014. A Probabilistic Model for Learning Multi-Prototype Word Embeddings. Proceedings of COLING.
Traugott, Elizabeth Closs, and Richard B. Dasher. 2001. Regularity in Semantic Change. Cambridge: Cambridge University Press.
Reisinger, Joseph, and Raymond J. Mooney. 2010. Multi-Prototype Vector-Space Models of Word Meaning. Proceedings of HLT-NAACL.
Wijaya, Derry Tanti, and Reyyan Yeniterzi. 2011. Understanding Semantic Change of Words Over Centuries. Proceedings of the 2011 International Workshop on Detecting and Exploiting Cultural Diversity on the Social Web, 35-40.
Yang, Jaewon, and Jure Leskovec. 2011. Patterns of Temporal Variation in Online Media. Proceedings of WSDM.

基金

该论文得到北京成像技术高精尖创新中心(BAICIT-2016006)、国家社科基金重大项目(13 & ZD190)和国家科技支撑计划(2014BAK04B03)的资助,特此致谢。

Accesses

Citation

Detail

段落导航
相关文章

/