怎样区分语言与方言——基于核心词汇的距离计算方法探索

冉启斌,索伦·维希曼

语言战略研究 ›› 2018, Vol. 3 ›› Issue (2) : 50-58.

欢迎访问《语言战略研究》官方网站!今天是
语言战略研究 ›› 2018, Vol. 3 ›› Issue (2) : 50-58. DOI: 10.19689/j.cnki.cn10-1361/h.20180205
语言战略研究

怎样区分语言与方言——基于核心词汇的距离计算方法探索

  • 冉启斌,索伦·维希曼
作者信息 +

How to Distinguish Languages and Dialects: A Quantitative Approach

  • Ran Qibin and Søren Wichmann
Author information +
文章历史 +

摘要

确定一种语言变体是语言还是方言,牵涉到语言内部和语言外部多方面因素。本文使用计算分析的方法,从语言自身的差异程度来探索语言与方言之间的界限,为语言与方言的区分提供较为客观的依据。论文以ASJP 数据库中的语档为对象,计算语言变体之间归一化列文斯坦距离的大小,提出0.48 这一距离值可以作为区分语言与方言的临界值。论文还讨论了《民族语言志》(Ethnologue)对语言与方言的区分过度与区分不足等问题。

Abstract

To determine whether a linguistic variety is a language or a dialect is a complex issue involving many aspects of both linguistic and sociolinguistic factors. In this study, we aim to provide a more objective basis for the distinction between languages and dialects. Quantitative approaches are used to explore the boundary between languages and dialects in terms of the degree of difference of language per se. For this purpose, the doculects in ASJP database are taken as the object and normalized Levenshtein distances are computed between language variants. Based on the findings obtained from computation, we propose that the value of LDN=0.48 can be used as the cut-off value to distinguish languages and dialects. In addition to what are described in this study, Ethnologue’s overdifferentiation and underdifferentiation between languages and dialects are discussed in this paper.

关键词

语言 / 方言 / 计算分析 / 归一化列文斯坦距离 / 临界值

Key words

language / dialect / quantitative approach / Levenshtein Distance Normalized / cut-off value

引用本文

导出引用
冉启斌,索伦·维希曼. 怎样区分语言与方言——基于核心词汇的距离计算方法探索[J]. 语言战略研究. 2018, 3(2): 50-58 https://doi.org/10.19689/j.cnki.cn10-1361/h.20180205
Ran Qibin and S?ren Wichmann. How to Distinguish Languages and Dialects: A Quantitative Approach[J]. Chinese Journal of Language Policy and Planning. 2018, 3(2): 50-58 https://doi.org/10.19689/j.cnki.cn10-1361/h.20180205

参考文献

江 荻 2017 《藏缅语谱系的自动分类实验》,《中国民族语言学报》第1 期。
孙宏开 2013 《关于语言身份的识别问题》,《语言科学》第5 期。
Adserà, Alícia and Mariola Pytliková. 2015. The role of language in shaping international migration. The Economic Journal 125 (586), F49–F81.
Agard, Frederick. 1984. A Course in Romance Linguistics. Georgetown: Georgetown University Press.
Bender, Marvin L. and Robert L. Cooper. 1971. Mutual intelligibility within Sidamo. Lingua 27, 32–52.
Biggs, Bruce. 1957. Testing mutual intelligibility among Yuman languages. International Journal of American Linguistics 23, 57–62.
Brown, Cecil H., Eric W. Holman, and Søren Wichmann. 2013. Sound correspondences in the world’s languages. Language 89 (1),4–29.
Casad, Eugene H. 1974. Dialect Intelligibility Testing. Oklahoma: University of Oklahoma at Norman.
Dryer, Matthew S. and Martin Haspelmath (eds.). 2013. The World Atlas of Language Structures Online. Leipzig: Max Planck Institute for Evolutionary Anthropology. (Available online at http://wals.info, Accessed on 2017-09-22.)
Gil, David. 2016. Describing languoids: When incommensurability meets the language-dialect continuum. Linguistic Typology 20 (2),439–462.
Gooskens, Charlotte, Vincent J. van Heuven, Jelena Golubović, et al. 2018. Mutual intelligibility between closely related languages in Europe. International Journal of Multilingualism 15 (2), 169–193.
Gooskens, Charlotte and Cindy Schneider. 2016. Testing mutual intelligibility between closely related languages in an oral society.Language Documentation and Conservation 10, 278–305.
Hammarström, Harald, Robert Forkel, and Martin Haspelmath. 2017. Glottolog 3.0. Jena: Max Planck Institute for the Science of Human History. (Available online at http://glottolog.org, Accessed on 2017-09-04.)
Hartigan, J. A. and M. A. Wong. 1979. Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society,Series C (Applied Statistics) 28, 100–108.
Holman, Eric W. 2011. Programs for calculating ASJP distance matrices (version 2.1). http://asjp.clld.org/software.
Holman, Eric W., Cecil H. Brown, Søen Wichmann, et al. 2011. Automated dating of the world’s language families based on lexical similarity. Current Anthropology 52 (6), 841–875.
Kluge, Angela. 2006. RTT retelling method: An alternative approach to intelligibility testing. SIL Electronic Working Papers 2007-006.
Ladefoged, Peter, Ruth Glick, and Clive Criper. 1972. Language in Uganda. London: Oxford University Press.
Lien, Donald, Chang Hoon Oh, and W. Travis Selmier. 2012. Confucius Institute effects on China’s trade and FDI: Isn’t it delightful when folks afar study Hanyu? International Review of Economics and Finance 21, 147–155.
Müller, André, Viveka Velupillai, Søren Wichmann, et al. 2013. ASJP world language trees of lexical similarity: Version 4 (October 2013).Okura, Eve. 2015. Language vs. dialect in language cataloguing: The vexed case of Otomanguean dialect continue. Working Papers in Linguistics 46 (5). Honolulu: University of Hawai’i at Mānoa.
R Core Team. 2017. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna,Austria. https://www.R-project.org/.
Rama, Taraka. 2017. Python script for calculating LDND on ASJP data. https://github.com/PhyloStar/python_ldnd.
Simons, Gary F. and Charles D. Fennig (eds.). 2017. Ethnologue: Languages of the World. 20th edition. Dallas: SIL International.
Swadesh, Morris. 1950. Salish internal relationships. International Journal of American Linguistics 16 (14), 157–167.
Swarte, Femke. 2016. Predicting the Mutual Intelligibility of Germanic Languages from Linguistic and Extra-Linguistic Factors.Groningen Dissertations in Linguistics, 150. Groningen: University of Groningen.
Szeto, Cecilia. 2000. Testing intelligibility among Sinitic dialects. Proceedings of ALS2K, the 2000 Conference of the Australian Linguistic Society. http://www.als.asn.au/proceedings/als2000/szeto.pdf.
Trudgill, Peter. 2000. Sociolinguistics: An Introduction to Language and Society. 4th edition. London: Penguin Books.
Voegelin, Charles F. and Zellig S. Harris. 1951. Methods for determining intelligibility among dialects of natural languages. Proceedings of the American Philosophical Society 95 (3), 322–329.
Whaley, Lindsay J., Lenore A. Grenoble, and Fengxiang Li. 1999. Revisiting Tungusic classifi cation from the bottom up. Language 75 (2), 286–321.
Wichmann, Søren. 2010. Internal language classification. In Luraghi, Silvia and Vit Bubenik (eds.), The Continuum Companion to Historical Linguistics. London/New York: Continuum Books.
Wichmann, Søren. 2017a. R script for calculating LDND from ASJP data. https://github.com/Sokiwi/LDND.
Wichmann, Søren. 2017b. R script for calculating LDN from ASJP data. https://github.com/Sokiwi/LDN.
Wichmann, Søren, Eric W. Holman, and Cecil H. Brown (eds.). 2016. The ASJP Database (version 17). http://asjp.clld.org/.
Wichmann, Søren, Eric W. Holman, Dik Bakker, et al. 2010. Evaluating linguistic distance measures. Physica A 389 (17), 3632–3639.
Wichmann, Søren, André Müller, and Viveka Velupillai. 2010. Homelands of the world’s language families: A quantitative approach. Diachronica 27, 247–276.


Accesses

Citation

Detail

段落导航
相关文章

/